

Accumeter Series

INSTRUCTION MANUAL

Introduction

The ACCUMETER uses low voltage and current. It is a 5-amp model regulated at 20 volts (which can be handled safely) except in rainy weather. The ACCUMETER is powered by a 12-volt Gel Cell Rechargeable Battery with a Power Inverter inside the unit. The POWER READY light will turn on when power is supplied to the instrument. There are four TEST JACKS and four GROUND ROD JACKS (each numbered 1 through 4) on panel of instrument. Four spools, each with 110 feet of cable wire, and four ground rods are furnished. Each ground rod is to be connected to a GROUND ROD JACK by a 110 foot wire. A "carrier wave" signal is transmitted by depressing the "CARRIER WAVE" TEST BUTTON. The signal can only be transmitted between two ground rods at a time. You can survey areas up to 24,000 square feet (over $\frac{1}{2}$ acre) or extend wire to cover 35,000 sq. ft. When extending wire over 24,000 sq. ft. subtract 10% off OHM reading per 100 feet of additional wire added over 110 ft.

The OHM Meter indicates the total resistance of the ground being tested from "point-to-point". Mineral soil conditions will reflect meter readings to a minimum. If the ground is a poor conductor, i.e., dry sand, the meter needle will indicate "high" readings in ohmic figures. If the ground is highly mineralized, the readings will be lower. Water deposits will show low readings, however, gold, silver, a vein, cache or coins buried will show lower ohmic resistance and "high conductivity". Very high readings indicate tunnels when connections are tight.

Prior to operating the ACCUMETER, please read this manual completely. Please observe all safety precautions, and when digging in areas to replace the soil once finished.

BASIC OPERATING INSTRUCTIONS:

Position all four ground rods in a "square" pattern arrangement with the instrument placed near or in the center of the pattern. It is best to try to survey an area of 24,000 square feet on each site unless research indicates suspected target is buried in a smaller confined area. Full wire extension equates out to approximately 24,000 square feet. In this case, position the ground rods closer to each other.

NOTE: Make sure good solid contact is made with ground rods-probe wires and quick disconnects, clip solid on copper coating of the rod (do not connect by steel easy pull tabs on top for best conductivity). Loose connections give false readings, change of readings, high readings, etc. 5/8'- 4' Brass rods may be substituted where loose top dirt layer exists. In areas where volcanic or high conductivity top layers exist put rods below conductive layer to get true resistive readings deep below. When surveying in warm or hot climate, BE SURE TO TAKE a white terry cloth towel to cover top of ACCUMETER. The towel will avoid over heating of the unit and the battery when in direct sunlight.

BEFORE YOU START SURVEYING

Check battery

Sketch a layout of format in your notebook with ground rods positions numbered. Also sketch the pattern you will be using (square, rectangle, straight fence pole, etc.)

"Zero" the meter

Be sure cable connections to the ground rods are making good solid contact. Loose connections give changes/false readings.

CHECK LIST FOR GOING OUT IN THE FIELD:

- *Water
- *Pliers
- *Screwdriver
- *White Towel
- *Hammer
- *Notebook/pencil
- *5 Gallon Plastic Bucket

OPERATING PROCEDURES for Accumeter VI (Analog)

In very dry ground, wet thoroughly the area where ground rods are pushed into the soil. This allows the "carrier wave" to travel down.

1. Place the ACCUMETER near the "center" of the suspected area to be surveyed.
2. Drive ground rods into the soil approximately 4 to 17 inches, spaced 220 feet apart (or less), in a "square" or "line" layout of your choice.
3. Connect the battery while testing the instrument. TURN OFF the ACCUMETER while moving rods. Avoid leaving on for long periods to save battery and to save the internal power invertors life.
4. Then connect each 110 feet of cable wire to ground rods close to the ground on copper coating. Plug end of each cable wire into GROUND ROD JACKS (numbered 1, 2, 3, and 4).
5. With POWER ON...Turn meter control to ON, this means that whatever numbers the needle points at the top readings must be multiplied by 10, example: meter points to 50 then multiply 50 by 10, that equals 500 and that means it is 500 ohms total resistance.
6. Lightly press the PRESS TO ZERO METER button and turn meter dial to "zero" the meter. You are now ready to transmit the "carrier wave" into the ground for testing.
7. Depress "CARRIER WAVE" TEST BUTTON and hold down for 1 to 3 seconds, not more. Be sure to test all SIDES and CENTER of format. If reading shows a 25% (or more from your higher background reading) drop in any area, you definitely need to investigate. If a "light response" is received on any SIDE or CENTER, then move ground rods closer and test from several different positions until you are confident the target has been pinpointed. Also, when a "light response" has been received, BE SURE TO RECORD THE METER READINGS. Keep moving the ground rods until you have obtained the lowest possible ohmic resistance (when searching for precious metals). NOTE: If NO "light bulb response" has been received after testing the Center and all four sides of format, you can move to another site as you CAN BE ASSURED NO GOOD CONDUCTIBLE TARGET IS PRESENT. Exception: When 400% plus drop has been noted on a vein at a site. With precious metals a lower OHM reading may be disguised because the quartz or silicon is insulating the gold.
8. In the test switches bank, turn switch of test top or bottom to the top and turn top (F) switch to the left... (See drawing Test Switch) That will test rods in the ground and line No. 1 and Number 2...Observe the reading of meter needle and take note of this figure in a notebook where you have drawn the square (4) just like it looks on the instrument. Should the target lamp light up, observe the brightness quality. If meter reads 45ohms (iron) and light is dim both sensors approve each other as per quality of conductor found. Save battery, if you are going to take time to record and study readings, move rods, etc. Turn OFF machine.
9. With power ON turn (H) switch to the top bank for F & G upper readings. Push (F) to the left checking 1 & 2 rods, now to the right, this will test rods #3 & #4. Again take note of reading.
10. Next push (G) switch to the left and test rods #1 & #3. Turn same switch to the right and test rods #2 & #4. Take note of this reading. This concludes testing the square all around.

OPERATING PROCEDURES for Accumeter VI (Analog)
Continued

11. Turn switch (H) to the bottom. To test the cross legs #1 and #4, #2 and #3 on the bottom, use the (I) switch.
12. Actuate bottom switch (I) to the left and test rods #1 & #4. Take readings down.
13. FINAL TEST...Actuate switch (I) (bottom) to the right and test rods #2 & #3 across box. Now interpret direction to move rods next and ledger (toward lowest ohm reading).

When test is complete, TURN OFF ALL SWITCHES on the instrument, especially the meter.

OPERATING PROCEDURES for Accumeter XV (Digital)

1. Place the ACCUMETER near the "center" of the suspected area to be surveyed.
2. Drive ground rods into the soil approximately 4 to 17 inches, spaced 220 feet apart (or less), in a "square" - "rectangle" - "trapezoid" - "line" or "other layout" of your choice.
3. Connect the battery while testing the instrument. TURN OFF the ACCUMETER while moving rods. Avoid leaving on for long periods to save battery and to save the invertors life.
4. Then connect each 110 feet of cable wire to ground rods close to the ground on copper coating. Plug end of each cable wire into GROUND ROD JACKS (numbered 1, 2, 3, and 4).
5. With Power connected to the "Battery" portion of Accumeter, move "Main Switch" to up position so that Green LED lights up.
6. Depress "CARRIER WAVE" TEST Switches and hold down for 1 to 3 seconds, not more. Be sure to test all SIDES and CENTER of Test Switch format. If reading shows a 25% (or more from your higher background reading) drop in any area, you definitely need to investigate. If a "light response" is received on any SIDE or CENTER, then move ground rods closer and test from several different positions until you are confident the target has been pinpointed. Also, when a "light response" has been received, BE SURE TO RECORD THE METER READINGS. Keep moving the ground rods until you have obtained the lowest possible ohmic resistance (when searching for precious metals). NOTE: If NO "light bulb response" has been received after testing the Center and all four sides of format, you can move to another site as you CAN BE ASSURED NO GOOD CONDUCTIBLE TARGET IS PRESENT. Exception: When 400% plus drop has been noted on a vein at a site. With precious metals a lower OHM reading may be disguised because the quartz or silicon is insulating the gold.
7. In the test switches bank, turn switch of test top or bottom to the top and turn top switch to the left... (See drawing Test Switch) That will test rods in the ground and line No. 1 and Number 2...Observe the reading of meter needle and take note of this figure in a notebook where you have drawn the square (4) just like it looks on the instrument. Should the target lamp light up, observe the brightness quality. If meter reads 450 ohms (iron) and light is dim both sensors approve each other as per quality of conductor found. Save battery, if you are going to take time to record and study readings, move rods, etc. Turn OFF machine.
8. With power ON turn switch to the top bank for upper readings. Push top switch to the left checking 1 & 2 rods, now to the right, this will test rods #3 & #4. Again take note of reading.
9. Next push 2nd series of test switch to the left and test rods #1 & #3. Turn same switch to the right and test rods #2 & #4. Take note of this reading. This concludes testing the square all around.
10. Final Test Turn 3rd "Bank Switch to the bottom for testing the cross legs #1 and #4, #2 and #3. Now, interpret direction to move rods next and ledger (toward lowest ohm reading).

When test is complete, TURN OFF ALL SWITCHES on the instrument, especially the meter.

In The Field Use NOTES:

In very dry ground, wet thoroughly the area where ground rods are pushed into the soil. This allows the "carrier wave" to travel down. Read the METER and JOT DOWN the READINGS in your notebook. Always begin testing with ground rods #1 and #2.

Any GOOD CONDUCTIVE MATERIAL the "CARRIER WAVE" hits below the surface will DROP THE RESISTANCE in the METER READING. If a HEAVY CONDUCTIVE METAL is located, LIGHT RESPONSE will "show".

NOTE: The LIGHT RESPONSE is DIMMER with HIGHER RESISTANCE and BRIGHT with LOWER RESISTANCE, like GOLD, SILVER, COPPER, etc. Then you know your instrument has detected a good CONDUCTIVE TARGET.

When surveying any site, be sure to survey the general area to determine ground conditions for that particular area. "NORMAL" mineralized ground will give an AVERAGE ohmic reading of APPROXIMATELY 1300 to 6000 ohms in most areas (see meter, to match readings..divide by x10). Some ground areas will give "higher" readings and others will indicate "lower" ohmic readings. Abnormal soil contains colloid (material in which finely divided particles of one substance are suspended in another). Abnormal soil that does contain colloid and colloidal metals are GOOD CONDUCTORS. In geophysics, where "RESISTIVITY" is the method required for surveying, COLLOIDAL conducting results in "BELOW NORMAL" RESISTANCE. Hence, the average resistance factor is determined by the COLLOIDAL CONDUCTANCE. Large ore or metal deposits offer SEVERE DROP in total RESISTIVITY. Thus, if 1800 ohms is the general 100 feet lengths of MEASURABLE RESISTANCE...HEAVIER METAL DEPOSITS WILL GIVE FURTHER LOWER RESISTANCE, such as 150 to 600 ohms indications.

NOTE: A way to check soil conductivity is to put several shovel full in a 5-gallon bucket (also known as the "**Bucket Test**"), put rods apart not touching and send carrier wave. Sometimes when readings are low without visible target the mineralization is from an ore body, salts from agriculture or unnatural chemical in earth can be found and tested. In some areas drilling maybe required to transmit carrier waves below the conductive top layer.

Black sand banks and deposits usually contain other high conductors suspended as colloidal precious metal particles. In those cases, bases of initial RESISTIVITY FACTORS are obtained from general typical ground resistance DRASTIC DROPS of RESISTIVITY will indicate LARGE PRECIOUS METAL DEPOSITS, such as PLACER, GOLD POCKETS, ETC. Beaches and ocean shores offer higher conductance of electricity due to various salts and high levels of colloidal metallic suspensions. All BURIED PRECIOUS METALS suffer an ELECTROLYSIS TARGET ACTION due to acid rain, snow and other chemicals. When acid and ultra high radiation ATTACKS precious metals, they are CONVERTED into "BATTERIES". FREE ELECTRON RADIATION FIELDS (F.E.R.F.) ARE CREATED AS A RESULT OF THE CHEMICAL CHANGES THAT HAVE TAKEN PLACE IN THE GROUND. These fields are as large as the size of each precious metal buried. The longer objects are buried the stronger the "BATTERY" field. When the STRONG low frequency signal is transmitted into the ground from one ground probe (or rod) to another ground probe, the wave is used as a "RADIO CARRIER" to override the D.C. small current of the ohmmeter current. We can PIGGY-BACK THE POTENTIAL DIFFERENCE-VOLTAGE/CURRENT PULSE ELECTRICAL ELECTROLYSIS WAVE. D.C. currents can hardly travel a few inches through the ground but when D.C. currents are made to ride ON TOP of an A.C. CURRENT "CARRIER", they will travel as far as the A.C. current can go. The "CARRIER WAVE" is always attracted by any F.E.R.F. As the "CARRIER WAVE" sinks into the ground it has a tendency to "disperse".

(continued from page 8)

BY CREATING A VIOLENT CHARGE TO SINK DEEP INTO THE GROUND, the "CARRIER WAVE" WILL FIND THE F.E.R.F. (Free Electron Radiation Field), TUNE AUTOMATICALLY TO IT AND FOLLOW IT. A POWERFUL "PULSATING IONIZER CURRENT" WILL SUPERCHARGE THE PRECIOUS METAL "BATTERY". Consequently, the F.E.R.F. will be EXTRA POWERFUL RADIATION. This is how the ACCUMETER works. It's very trustworthy for detecting precious metals below the surface of the ground. PRACTICE ON KNOW TARGETS FIRST, this experience will eliminate doubts and problems encountered in the field. EXAMPLE: Known mine ore body.

LIMITATIONS: Freshly buried targets will not give true readings. Targets must be buried deeper than two feet to be detected. Objects in solid glass containers may be detected, if metal in glass containers touch metal caps. The ACCUMETER cannot be operated in dry sand dunes, hot days (without a cover), or in the rain! There MUST be minerals in the ground for "carrier wave" to conduct. If gold, silver, or coins are in an iron or steel chest, the "carrier wave" can ONLY DETECT the chest and CANNOT GIVE an ohmic resistance reading for gold or silver. The ACCUMETER can detect gold and/or silver hidden in a tunnel or cave; however, the ohmic resistance reading will be "higher" than if found in other ground areas. EXPERIENCE will enable the operator to evaluate readings to determine GOOD CONDUCTIVE targets.

A 12 Volt Gel Cell Rechargeable Battery may be used as your Power Source. A 12 Volt Charger is furnished for charging the battery. The 12 Volt Battery with enclosed Power Inverter will allow 30 to 40 hours of continuous power supply if machine is turned off while moving the rods. Another advantage is "quiet" operation. Be sure to keep voltage above 11.5 volts for proper operation of the ACCUMETER. BE SURE the "RED" LEAD is connected to the "POSITIVE" TERMINAL on the battery and "BLACK" LEAD to the "NEGATIVE" TERMINAL. The POWER READY light will turn on when power is applied to instrument. NOTE: If the POWER READY light DOES NOT TURN ON when power is applied, the 5 amp fuse will need to be replaced.

Accumeter VI Control Panel Description

CONTROLS:

1. Zero adjusts tunable control, used to adjust meter to zero when "press to Adjusts meter to Zero" is pressed and meter zero knob turned.
2. Ohm resistance meter. Where resistivity profile readings are given on panel of Instrument for potential types of targets detected like Precious Metals, Tunnels, Etc..
3. Turn Switch for meter to **ON** for operation. Turning to position before or after **ON** does not indicate targets correctly.
4. Target Response Lamp. Simply shows by brightness, how conductive the ground target is when tested between the two rods/wires.
5. Test Switches. Four switches that change between ground probe jack detection. 3rd switch is to change between first two switches, and bottom 4th switch for diagonal detection.
6. Main Switch. When turned ON, the Green LED light will come on to indicate that there is power to the control unit of Accumeter.
7. Carrier Power Green LED Shows if power is coming from battery to control unit after "main switch" selected.
8. Power Ready Red LED. Lights up when power is plugged into the Battery Connection.
9. 5 Amp Fuse. Is changed with same or similar rating (fast blow suggested) if there is a power surge to system and element inside of glass is blown (usually if rods are crossed or to close while taking readings).
10. Battery. Red plug for positive, black for negative. Plug from 12V battery/clips to banana plug on end.
11. Ground probe jacks, banana plugs from wire leads of ground rods #1, #2, #3, & #4 should be connected here. **Clips with wire need to be placed on copper coating below rod pull out tabs at ground.**

Accumeter XV Pro

Control Panel Description

1. Digital Resistance Meter. Shows the resistivity of the ground between the rod and wire set when “test switch” is pulled for indication. “Hi” range is to show targets with a lot of resistance to signal being transmitted like Iron. LED light will signal that resistance has shown in this field. If resistance is low, the LED on “Lo” side of meter will light and meter will light with number of resistance.
2. Target Response Lamp. Simply shows by brightness, how conductive the ground target is when tested between the two rods/wires. If possible gold target, indication of lamp is very bright. Dim might be Iron, Tunnels, or water (depending on ground mineral conditions).
3. Test Switches. Four switches that change between ground probe jack detection. 3rd switch is to change between first two switches, and bottom 4th switch for diagonal detection.
4. Carrier Power. Turns on/off power to main control unit. Green LED indicates power is going to control unit once switch is selected to on position.
5. Power Ready. Shows if power is coming from battery to control unit.
6. 5 Amp Fuse. Is changed with same or similar rating (fast blow suggested) if there is a power surge to system and element inside of glass is blown (usually if rods are crossed or to close while taking readings).
7. Battery. Red plug for positive, black for negative. Plug from 12V battery/clips to banana plug on end.
8. Ground probe jacks, banana plugs from wire leads of ground rods #1, #2, #3, & #4 should be connected here. Clips with wire need to be placed on copper coating below rod pull out tabs at ground.

HOW TO IMPROVE "DETECTION"

The rods furnished with your instrument are made out of "sweet iron" with a copper coating, which are fine except that you have to make sure to clean them with steel wool after every use and keep them dry, you should NOT use oil to prevent oxidizing. Connect copper clips close to ground on copper coating with rods in solid ground (do not connect by steel easy pull tabs on top for best conductivity).

In some larger cities electrical or electronic suppliers carry 3/8 or 1/2 inch copper coated steel rods of 4 feet or so length. These make the very best antenna stake probe rods and they can be driven down deeper thus providing better "carrier wave" transmission.

HOW TO USE "DUMMY LOADS"

A "dummy load" tester is included with your ACCUMETER. THIS DUMMY LOAD TESTER SHOULD ENABLE YOU TO TEST YOUR INSTRUMENT FOR SIMILAR RESPONSE. It should relieve you of any doubts on whether your instrument is operating correctly.

HOW TO DO A "DUMMY LOAD" TEST FOR AN IRON TARGET:

1. Attach battery (red) positive & (black) negative plugs from instrument on to (red) & (black) battery attachment clips.
2. Turn meter to "ON" and "ZERO" adjust.
3. Place target response switch on, bank switch to the top.
4. Insert leads of the dummy load into BANANNA JACKS #1 and #2, make sure good contact is done.
5. Activate TEST switch "transmit".
6. After test, the Dummy loads are only to show sample. They are **NOT** used in detection or calibration of Accumeter unit.

Meter should point to IRON mark and lamplight should light up not too bright.

REPEAT THE TEST NOW FOR DUMMY "GOLD" LOAD USING TEST LEADS or at the end of wired connected to rods. (Do not touch rods together) Send carrier wave; check well for a good connection.

When the circuit is complete, you can see a bright lamp response on the meter, and the meter will be pointing in the GOLD and COPPER (precious metals) area. You know now HOW TO DIFFERENTIATE TARGETS, and that your ACCUMETER is working properly.

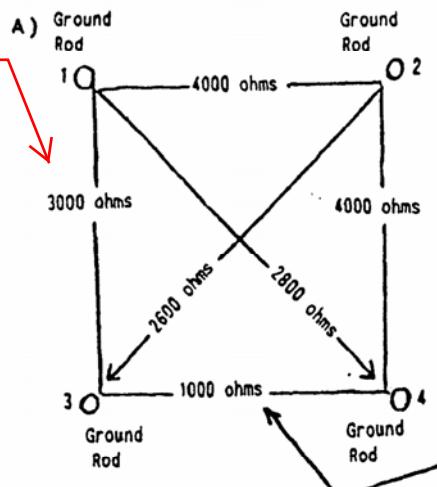
Attention:

DUMMY LOADS ARE NOT USED TO DETECT, ONLY TO SHOW REPRESENTATION OF POTENTIAL READINGS WHEN RODS ARE IN GROUND. NOT NEEDD FOR REGULAR USE.

DETERMINING SHAPE:

The shape of the buried object can also be determined by the position of the ground rods. Let's say, the best readings are obtained by placing ground rods #1 and #2 eighty (80) feet apart. Crossing rods (90 degree angle) #3 and #4 at the center gives the best (lowest) reading at six feet apart. You can figure that what is being detected is long and narrow, or something that rises at that point.

(Refer to EXAMPLE #3)

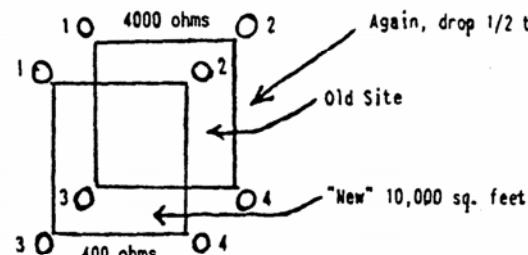

DEPTH:

Depth is determined by placing the ground rods closer and closer to each other, as long as the ohmic resistance readings continue to get lower. When moving the rods closer results in no lower change in readings, then go back to the distance where you first received the lowest reading. That is the best place for testing depth. Half of the distance at best testing place is the depth. If crosswise you are getting better readings at 15 feet, it could mean that you are off center of the object or there could possibly be two objects. It is worthwhile to shift all four-ground rods 45 degrees, still using the same center and retest the area. Testing with known objects buried several years or an ore body, test various depth levels will be good practice before searching for unknown objects.

(Refer to lower EXAMPLE #3)

**How To Locate A Target
Using A "Box Square" EXAMPLE #1**

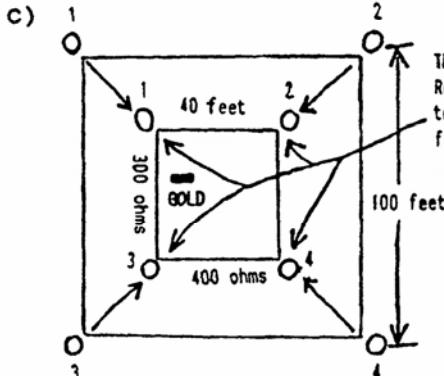
Note:
Divide Graph
Numbers by 10
To Match Target
Indication Meter

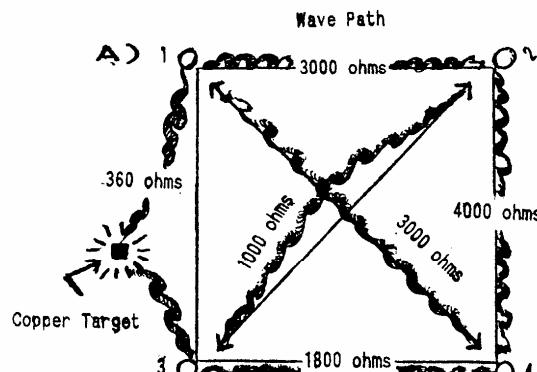


Start 50' box or with 20,000 square feet area, 100 feet from Ground Rod to Ground Rod (the "Carrier Wave" will actually transmit within a 24,000 to 30,000 sq. ft. of area).

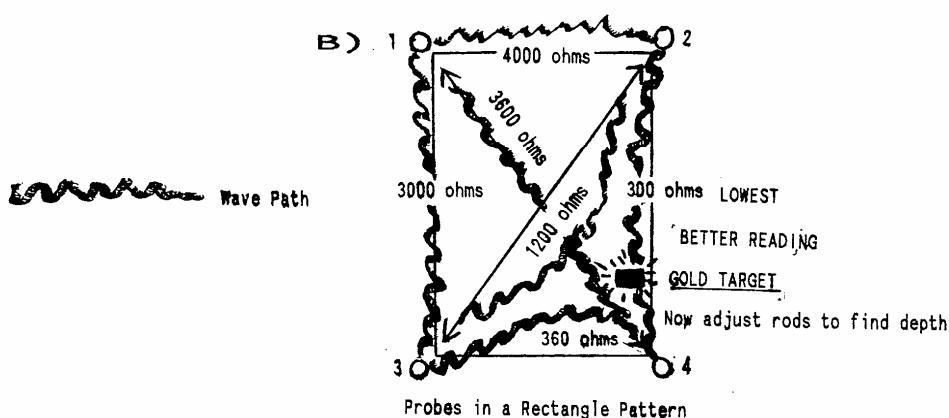
Notice in the given example that one side of square gives a 1000 ohm reading.

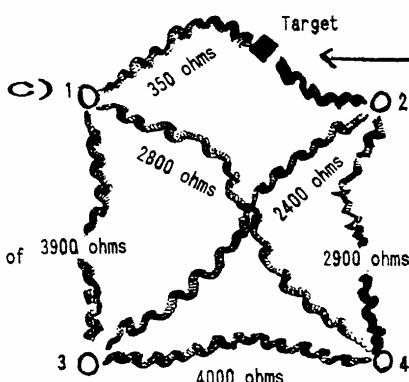
B)


Again, drop 1/2 the plot.


New resistance profile continues to follow a lower reading towards the bottom.

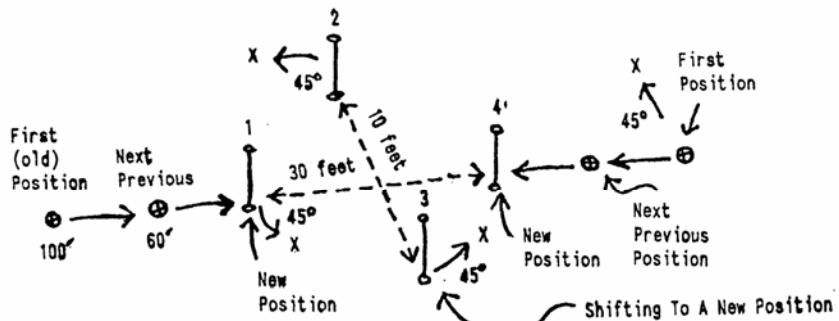
C)


The Next Step - Move the four Ground Rods toward center of square plot area to surround target (approximately 40 feet apart).

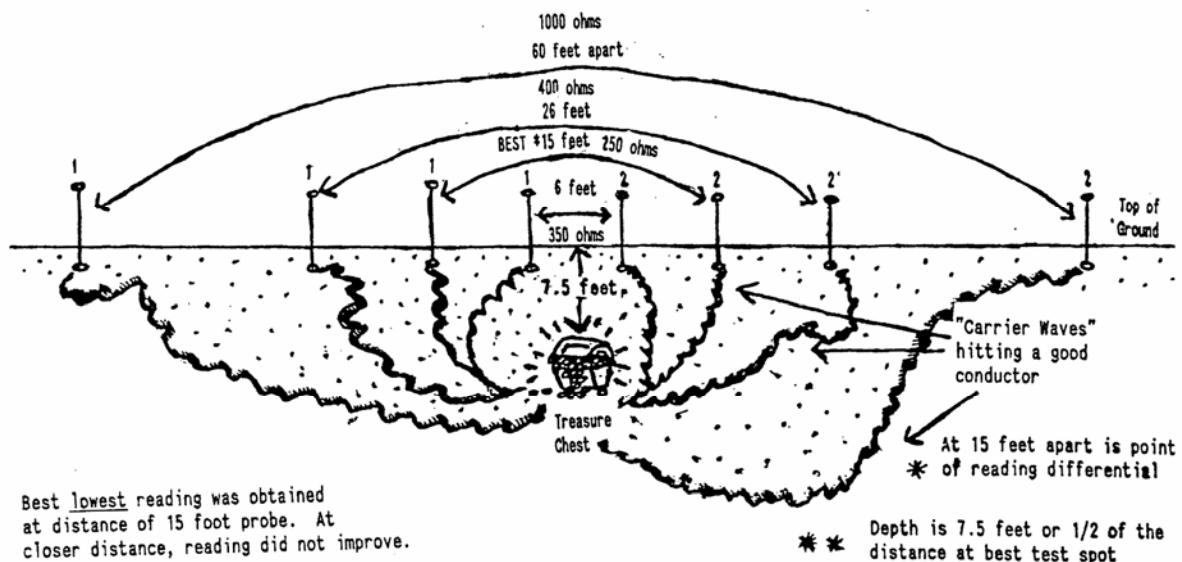

EXAMPLE #2
Carrier Wave Path Examples

Ground rods in a Square Pattern
Signal test from all angles

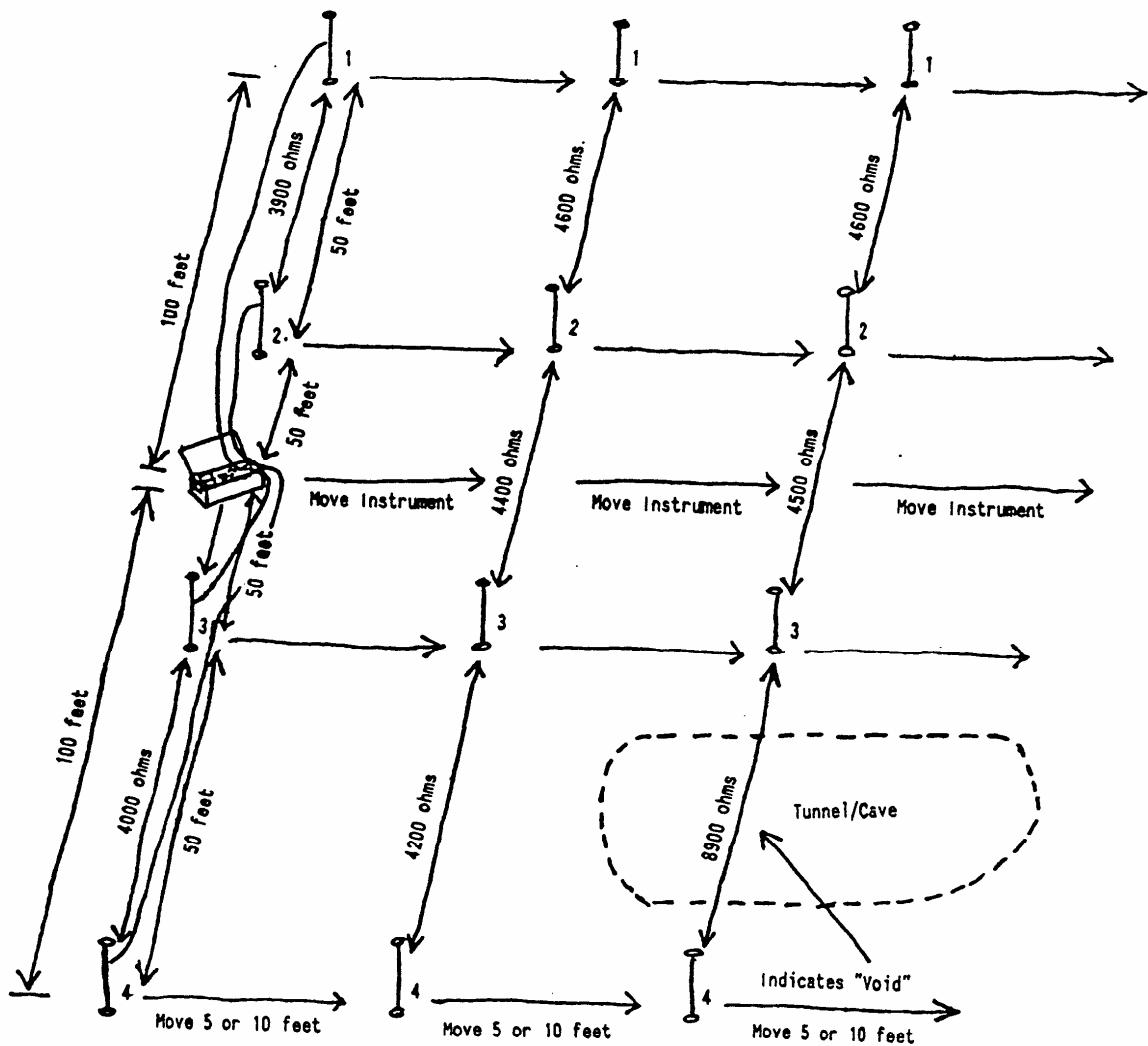
When a good conductive target is located near the bottom of format, 4 branches will show good readings of + or - 300 or below.



Notice extreme low reading only on one branch. It possibly means a good target outside the format. Shift format to that side.


When target has been located in center of format. You'll have an X reading (low resistivity).

EXAMPLE #3


DETERMINING SHAPE OF A TARGET

DETERMINING DEPTH

EXAMPLE #4
Locating Tunnels/Caves Underground
Using The Ground Rods In A Straight Line Format

Accumeter Questions and Answers

Q. What is the principle of scientific operations of the Accumeter?

A. It operates on the principle of resistivity. It measures ground resistance between ground probes which are put in the ground in the area where the suspected target is located. It compares the results to known readings from various metals and mineral to the higher background reading.

Q. How will I know if I have located the gold/silver, water, or if there is a cave or tunnel below?

A. It has an ohm resistance meter which will tell you what is below the surface, also a light indicator.

Q. How big of an area can I search at a time?

A. A 20,000 to 35,000 square foot search area with extended wire.

Q. Is the Accumeter difficult to operate in a conductive salt layer?

A. Yes, and in order to tell if you are in a conductive salt layer you need to test the dirt. In the instructions it tells you how to put a sample in a plastic bucket and test it.

Q. What size of a target will it find?

A. It pinpoints 5 lbs. and up which has been buried for a period of time.

Q. How long does the target have to be buried before the Accumeter will find it?

A. It is for long time buried targets not for freshly buried ones. For example: a rusty nail, copper, etc. acts like a buried battery. Copper sulfate can expedite the process. We have 5 lbs. buried at 3 feet for 7 months, but it was only recently that we could see the lower resistance reading on the Accumeter.

Q. Will it find a target surrounded by air or in a glass or plastic container?

A. No, the current will not jump to make a connection to show resistance.

Q. Does the conductive layer of the earth have an effect on the response of the rods that are put in the earth to get an accurate reading?

A. Yes, check the dirt in a plastic bucket. Sometimes you may find a conductive layer in the earth. Example: Chemicals, salts, volcanic conductive layer minerals like gold, silver, & copper. A cache was found in the Philippines. The rods needed to be put deeper than that low ohms layer to get a true reading below. They were put 4 meters (drilled) before sending a carrier wave. Remember, they are measuring ohms of resistance between 2 points at a time and there are different conditions in our planet which need to be accommodated for to get good results.

NOTE: Please consider some answers to the questions above can vary according to ground mineralization, faulting, conductivity, dampness, temperature, humidity, & so on...

Limited Manufacturer's Warranty

Accurate Locators Inc. warrants your consumer or industrial product ("Product") against defects in material or workmanship for a period of one (1) year from the date of purchase. If Accurate determines the product to be defective in materials or workmanship, Accurate will replace or repair the product to the original purchaser only. To obtain warranty service worldwide, call +1 541-326-4169 or visit us at www.accuratelocators.com. Please include a written description of the problem encountered. A Return Merchandise Authorization ("RMA") will need to be obtained prior to returning the equipment. If equipment is returned without a RMA it will not be accepted.

REPLACEMENT OF THIS PRODUCT AS PROVIDED UNDER THIS LIMITED WARRANTY SHALL BE THE EXCLUSIVE REMEDY OF THE CONSUMER. ACCURATE SHALL NOT BE LIABLE FOR ANY LOSS OR DAMAGES, INCLUDING CONSEQUENTIAL, INDIRECT AND INCIDENTAL DAMAGES, ARISING OUT OF THE USE OF, OR INABILITY TO USE, THE PRODUCT OR FOR BREACH OF ANY EXPRESS OR IMPLIED WARRANTY OR CONDITION ON THIS PRODUCT. EXCEPT TO THE EXTENT PROHIBITED BY LAW, ANY IMPLIED WARRANTIES OR CONDITIONS OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE LIMITED IN DURATION TO THE DURATION OF THIS WARRANTY.

Some stats/jurisdictions do not allow limitations on how long an implied warranty or condition lasts or exclusions or limitation or consequential or incidental damages, so the above limitation or exclusions may not apply to you. This warranty gives you specific legal rights, and you may also have other rights which vary from state to state in the U.S. and Puerto Rico or from province to province or territory in Canada.

Accurate's warranty is for repair or replacement only of products that proves to be defective in workmanship or material subject to the warranty period and any other conditions set forth on the package. In some cases manufacturer's warranty may supersede Accurate Locators warranty. Physically damaged merchandise or merchandise where control seals are removed or damaged is not covered under warranty. Customer is responsible for all shipping costs to and from Accurate Locators.

**Accurate Locators, Inc
1383 2nd Ave.
Gold Hill, OR 97525 USA**

**Technical Support: accurate@accuratelocators.com
+1 541 326-4169**